Contohsoal turunan parsial dan pembahasannya. Contoh soal aplikasi turunan trigonometri maksimum dan minimum. - fyy dimana turunan pertama terhadap y. Contoh lainnya yaitu terdapat fungsi g. Contoh Soal Integral Substitusi Terlengkap. Tentukan turunan parsial terhadap x dan turunan parsial terhadap y fungsi yang dirumuskan dengan fxy x2y x y 1. Persamaandiferensial parsial adalah persamaan yang memuat satu atau lebih turunan parsial dengan dua atau lebih variabel bebas. 20200805 Contoh soal diferensial parsial 1 untuk fungsi y 3x 2 5z 2 2x 2 z 4xz 2 9 tentukanlah derivatif parsialnya. Dari 1 dan 2 diperoleh q a 1 25 dan q b 11. Turunandan integral ialah merupakan 2 fungsi yang sangat penting dalam kalkulus. Cukup hanya melihat saja soal tersebut anda akan temukan jawabannya dan pastinya jawaban tersebut benar. Contoh Soal Fisika Kelas 12 Dan Pembahasannya Dikdasmen Soal turunan fungsi atau soal diferensialsoal turuan fungsiini dilengkapi dengan kunci jawaban sehingga mepermudah dalam belajarmateri turunan fungsiatau Postinganini membahas contoh soal turunan perkalian dan turunan pembagian yang disertai penyelesaiannya atau pembahasannya. Kita akan membutuh kan dua devariatif parsial. Z = penyelesaian 12 c. Definisi dari turunan itu sendiri sebenarnya bahwa turunan adalah sebuah fungsi atau fungsi yang lain yang dinotasikan oleh f yang dibaca f aksen. Tentukan turunan parsial pertama dari a. SoalTurunan Parsial Dan Jawabannya. Barang siapa dengan sengaja dan tanpa hak mengumumkan atau memperbanyak suatu ciptaan atau memberi izin untuk itu, dipidana dengan pidana penjara paling lama 7 (tujuh) tahun dan/atau denda paling banyak rp,00 (lima miliar rupiah). Barang siapa dengan sengaja menyiarkan, memamerkan, mengedarkan Admindari blog Contoh Soal Terbaru 2020 juga mengumpulkan gambar-gambar lainnya terkait contoh soal turunan parsial dan penyelesaiannya dibawah ini. Bab 2 Turunan Parsial. Dibawah ini adalah informasi Contoh Soal Spreadsheet Akuntansi Dan Jawabannya Kelas 10. Soal Patuas Spreadsheet Ke Contoh Soal Teks Persuasi Kelas 8 Kurikulum 2013 CDYgT. Rabu, 13 Januari 2021 Edit Video ini membahas bagaimana menurunkan suatu fungsi secara parsial terhadap variabel x dan y. Postingan ini membahas contoh soal turunan perkalian dan turunan pembagian yang disertai penyelesaiannya atau pembahasannya. Kita akan membutuh kan dua devariatif parsial. Z = penyelesaian 12 c. Definisi dari turunan itu sendiri sebenarnya bahwa turunan adalah sebuah fungsi atau fungsi yang lain yang dinotasikan oleh f yang dibaca f aksen. Tentukan turunan parsial pertama dari a. Pada mata pelajaran matematika, kita sering mendengar istilah turunan. Bagiamana manfaatnya untuk mengamati perilaku fungsi lebih x tetap. Tentukan turunan parsial pertama dari a. Untuk contoh soal himpunan diagram venn sd smp sma smk. Kumpulan contoh soal himpunan matematika dan pembahasannya beserta penyelesaian jawabannya. Demikian beberapa contoh soal dan pembahasan tentang molalitas. Bagiamana manfaatnya untuk mengamati perilaku fungsi lebih x tetap. Ini dibedakan dengan turunan total, yang membolehkan semua variabelnya untuk berubah. Turunan dan integral ialah merupakan 2 fungsi yang sangat penting dalam kalkulus. 101 Contoh Soal Turunan Parsial Jawaban Dikdasmen - Here's 101 Contoh Soal Turunan Parsial Jawaban Dikdasmen collected from all over the world, in one place. The data about 101 Contoh Soal Turunan Parsial Jawaban Dikdasmen turns out to be....101 contoh soal turunan parsial jawaban dikdasmen, riset, 101, contoh, soal, turunan, parsial, jawaban, dikdasmen LIST OF CONTENT Opening Something Relevant Conclusion Recommended Posts of 101 Contoh Soal Turunan Parsial Jawaban Dikdasmen Conclusion From 101 Contoh Soal Turunan Parsial Jawaban Dikdasmen 101 Contoh Soal Turunan Parsial Jawaban Dikdasmen - A collection of text 101 Contoh Soal Turunan Parsial Jawaban Dikdasmen from the internet giant network on planet earth, can be seen here. We hope you find what you are looking for. Hopefully can help. Thanks. See the Next Post Jika integrasi menggunakan cara substitusi tidak berhasil, maka kita dapat menggunakan cara lain, yaitu integrasi parsial integration by parts, atau seringnya disebut sebagai integral parsial. Cara ini didasari oleh aturan hasil kali turunan dari dua buah fungsi. Misalkan $u = ux$ dan $v = vx$, maka $$D_x\left[uv\right] = uv’ + uv’$$atau $$uv’ = D_x\left[uv\right]-vu’.$$Dengan mengintegralkan kedua persamaan di atas terhadal variabel $x$, kita peroleh $$\displaystyle \int uv’~\text{d}x = uv-\int vu’~\text{d}x.$$Karena $\text{d}v = v'x~\text{d}x$ dan $\text{d}u = u'x~\text{d}x,$ persamaan terakhir di atas biasanya ditulis dalam bentuk berikut. $$\boxed{\large{\displaystyle \int u~\text{d}v = uv-\int v~\text{d}u}}$$Rumus yang bersesuaian untuk integral tentu dengan batas bawah $a$ dan batas atas $b$ adalah $$\boxed{\large{\displaystyle \int_a^b u~\text{d}v = \left[uv\right]_a^b-\int_a^b v~\text{d}u}}$$ Rumus di atas memperkenankan kita mengubah soal integrasi $u~\text{d}v$ menjadi integrasi $v~\text{d}u$. Keberhasilan cara ini sebenarnya juga bergantung pada kecakapan kita dalam memilih bentuk yang tepat untuk dimisalkan sebagai $u$ dan $\text{d}v$. Kecakapan ini dapat dilatih dengan terus menerus latihan soal serupa. Gambar berikut mengilustrasikan interpretasi penafsiran secara geometris dari integrasi parsial. Saat menggunakan metode integral parsial, kita mungkin sering dibuat bingung dengan permisalan $u$. Kunci pemilihan $u$ yang benar pada bentuk integran pada umumnya adalah turunan ke sekiannya harus bernilai konstan hanya memuat bilangan, tidak memuat variabel lagi. Turunan ke sekian di sini tidak berarti harus turunan pertama, bisa jadi turunan kedua, turunan ketiga, dan seterusnya. Sebagai contoh, diberikan integral berikut. $$\displaystyle \int \tan x \cdot x~\text{d}x$$Integrannya terdiri dari perkalian dua buah fungsi, yaitu $fx = \tan x$ dan $gx = x$. Permisalan fungsi yang dipilih sebagai $u$ seharusnya $gx = x$ , karena turunan pertamanya $g'x = 1$ berupa konstan. Baca Juga Soal dan Pembahasan – Integral dengan Metode Substitusi Aljabar dan Trigonometri Meskipun demikian, ada beberapa kasus yang memaksa kita menggunakan permisalan $u$ untuk fungsi yang turunannya tidak pernah konstan, misalnya $$\displaystyle \int e^x \sin x~\text{d}x$$di mana pemilihan $u$ yang tepat adalah $u = e^x$, padahal turunan dari $e^x$ akan tetap dan selalu $e^x$. Soal ini akan dibahas penyelesaiannya di bawah secara rinci. Berikut ini tabel turunan yang mungkin dapat dijadikan sebagai acuan untuk mengerjakan soal integral parsial. $$\begin{array}{cc} \hline \color{red}{fx} & \color{blue}{f'x} \\ \hline x^r & rx^{r-1} \\ \hline \sin x & \cos x \\ \hline \cos x & -\sin x \\ \hline \tan x & \sec^2 x \\ \hline \cot x & -\csc^2 x \\ \hline \sec x & \sec x \tan x \\ \hline \csc x & -\csc x \cot x \\ \hline \ln x & \dfrac{1}{x} \\ \hline e^x & e^x \\ \hline \arcsin x & \dfrac{1}{\sqrt{1-x^2}} \\ \hline \arccos x & -\dfrac{1}{\sqrt{1-x^2}} \\ \hline \arctan x & \dfrac{1}{1+x^2} \\ \hline \end{array}$$ Berikut ini beberapa soal mengenai penggunaan cara integrasi parsial yang telah disertai pembahasan. Perlu diperhatikan bahwa keterampilan mengintegralkan fungsi dengan menggunakan sifat-sifat dasar integral dan teknik substitusi harus diasah terlebih dahulu sebelum mengerjakan soal-soal integral parsial. Baca Juga Soal dan Pembahasan – Integral Tentu Today Quote You can’t go back and change the beginning, but you can start where you are and change the ending. Bagian Pilihan Ganda Soal Nomor 1 Hasil dari $\displaystyle \int xx+4^5~\text{d}x = \cdots \cdot$ A. $\dfrac{1}{21} 3x-2x+4^6 + C$ B. $\dfrac{1}{21} 3x+2x+4^6 + C$ C. $\dfrac{1}{21} 3x-2x-4^6 + C$ D. $\dfrac{1}{42} 3x-2x+4^6 + C$ E. $\dfrac{1}{42} 3x+2x+4^6 + C$ Pembahasan Misalkan $$\begin{aligned} u = x & \Rightarrow \text{d}u = \text{d}x \\ \text{d}v = x+4^5~\text{d}x & \Rightarrow v = \dfrac16x+4^6 \end{aligned}$$Dengan menggunakan rumus integrasi parsial, kita peroleh $$\begin{aligned} \displaystyle \int \underbrace{x}_{u}~\underbrace{x+4^5~\text{d}x}_{\text{d}v} & = \underbrace{x}_{u} \cdot \underbrace{\dfrac16x+4^6}_{v}- \int \underbrace{\dfrac16x+4^6}_{v} \cdot~\underbrace{\text{d}x}_{\text{d}u} \\ & = \dfrac16xx+4^6-\dfrac16 \cdot \dfrac17x+4^7 + C \\ & = \dfrac16xx+4^6-\dfrac{1}{42}x+4^7 + C \\ & = \dfrac{1}{42}x+4^67x-x+4 + C \\ & = \dfrac{1}{42}x+4^66x-4 + C \\ & = \dfrac{1}{21}3x-2x+4^6 + C \end{aligned}$$Jadi, hasil dari $$\boxed{\displaystyle \int xx+4^5~\text{d}x = \dfrac{1}{21}3x-2x+4^6 + C}$$Jawaban A [collapse] Soal Nomor 2 Hasil dari $\displaystyle \int t\sqrt[3]{2t+7}~\text{d}t$ adalah $\cdots \cdot$ A. $\dfrac{3}{112}2t+7^{4/3}8t-21+C$ B. $\dfrac{3}{112}2t+7^{7/3}8t-21+C$ C. $\dfrac{3}{112}2t+7^{4/3}8t+21+C$ D. $\dfrac{9}{112}2t+7^{4/3}8t-21+C$ E. $\dfrac{9}{112}2t+7^{7/3}8t-21+C$ Pembahasan Misalkan $$\begin{aligned} u & = t \Rightarrow \text{d}u = \text{d}t \\ \text{d}v & = \sqrt[3]{2t+7}~\text{d}t \end{aligned}$$Dengan mengintegralkan $\text{d}v$ menggunakan metode substitusi, dalam hal ini, $u = 2t + 7$, diperoleh $$\begin{aligned} v & = \displaystyle \int \sqrt[3]{2t+7}~\text{d}t \\ & = \dfrac12 \int u^{1/3}~\text{d}u \\ & = \dfrac12 \cdot \dfrac34 \cdot u^{4/3} \\ & = \dfrac382t+7^{4/3} \end{aligned}$$Catatan Konstanta $C$ tidak perlu ditulis. Dengan menggunakan rumus integrasi parsial, kita peroleh $$\begin{aligned} \displaystyle \int \underbrace{t}_{u} \underbrace{\sqrt[3]{2t+7}~\text{d}t}_{\text{d}v} & = \underbrace{t}_{u} \cdot \underbrace{\dfrac382t+7^{4/3}}_{v}- \int \underbrace{\dfrac382t+7^{4/3}}_{v}~\underbrace{\text{d}t}_{\text{d}u} \\ & = \dfrac38t2t+7^{4/3}-\dfrac38 \cdot \dfrac12 \cdot \dfrac372t+7^{7/3} + C \\ & = \dfrac{42}{112}t2t+7^{4/3}-\dfrac{9}{112}2t+7^{7/3}+C \\ & = \dfrac{3}{112}2t+7^{4/3}14t-32t+7+C \\ & = \dfrac{3}{112}2t+7^{4/3}8t-21 + C \end{aligned}$$Jadi, hasil dari $$\boxed{\displaystyle \int t\sqrt[3]{2t+7}~\text{d}t =\dfrac{3}{112}2t+7^{4/3}8t-21 + C}$$Jawaban A [collapse] Baca Juga Soal dan Pembahasan – Integral dengan Metode Substitusi Aljabar dan Trigonometri Soal Nomor 3 Hasil dari $\displaystyle \int t \sqrt{t+1}~\text{d}t$ adalah $\cdots \cdot$ A. $\dfrac23tt+1^{3/2}-\dfrac{4}{15}t+1^{5/2} + C$ B. $\dfrac23tt+1^{3/2}+\dfrac{4}{15}t+1^{5/2} + C$ C. $\dfrac32tt+1^{3/2}-\dfrac{4}{15}t+1^{5/2} + C$ D. $\dfrac32tt+1^{3/2}+\dfrac{4}{15}t+1^{5/2} + C$ E. $\dfrac23tt+1^{5/2}-\dfrac{4}{15}t+1^{3/2} + C$ Pembahasan Misalkan $$\begin{aligned} u = t & \Rightarrow \text{d}u = \text{d}t \\ \text{d}v = \sqrt{t+1}~\text{d}t & \Rightarrow v = \displaystyle \sqrt{t+1}~\text{d}t = \dfrac23t+1^{3/2} \end{aligned}$$Dengan menggunakan rumus integrasi parsial, kita peroleh $$\begin{aligned} \displaystyle \int \underbrace{t}_{u} \underbrace{\sqrt{t+1}~\text{d}t}_{\text{d}v} & = \underbrace{t}_{u} \cdot \underbrace{\dfrac23t+1^{3/2}}_{v}-\int \underbrace{\dfrac23t+1^{3/2}}_{v}~\underbrace{\text{d}t}_{\text{d}u} \\ & = \dfrac23tt+1^{3/2}-\dfrac23 \cdot \dfrac25t+1^{5/2} + C \\ & = \dfrac23tt+1^{3/2}-\dfrac{4}{15}t+1^{5/2} + C \end{aligned}$$Jadi, hasil dari $$\boxed{\displaystyle \int t\sqrt{t+1}~\text{d}t = \dfrac23tt+1^{3/2}-\dfrac{4}{15}t+1^{5/2} + C}$$Jawaban A [collapse] Soal Nomor 4 Nilai dari $\displaystyle \int_{-1}^0 \dfrac{t}{3t+4^3}~\text{d}t = \cdots \cdot$ A. $-\dfrac12$ C. $-\dfrac16$ E. $-\dfrac{1}{16}$ B. $-\dfrac14$ D. $-\dfrac18$ Pembahasan Misalkan $$\begin{aligned} u = t & \Rightarrow \text{d}u = \text{d}t \\ \text{d}v & = \dfrac{1}{3t+4^3}~\text{d}t \end{aligned}$$Dengan mengintegralkan $\text{d}v$ menggunakan metode substitusi, dalam hal ini, $u = 3t + 4$, diperoleh $$\begin{aligned} v & = \displaystyle \int \dfrac{1}{3t+4^3}~\text{d}t \\ & = \dfrac13 \int u^{-3}~\text{d}u \\ & = \dfrac13 \cdot \dfrac{1}{-2} \cdot u^{-2} \\ & = -\dfrac{1}{63t+4^2} \end{aligned}$$Catatan Konstanta $C$ tidak perlu ditulis. Dengan menggunakan rumus integrasi parsial untuk integral tentu, kita peroleh $$\begin{aligned} \displaystyle \int_{-1}^0 \dfrac{t}{3t+4^3}~\text{d}t & = \left[t \cdot \left-\dfrac{1}{63t+4^2}\right\right]_{-1}^0-\int_{-1}^0 -\dfrac{1}{63t+4^2}~\text{d}t \\ & = 0-\left-1 \cdot \dfrac{-1}{61^2}\right + \dfrac16 \cdot \dfrac13 \cdot \dfrac{1}{-1} \cdot \left[\dfrac{1}{3t+4}\right]_{-1}^0 \\ & = -\dfrac16-\dfrac{1}{18}\left[\dfrac14-1\right] \\ & = -\dfrac16-\dfrac{1}{\cancelto{6}{18}} \cdot \left-\dfrac{\cancel{3}}{4}\right \\ & = -\dfrac16+\dfrac{1}{24} = -\dfrac18 \end{aligned}$$Jadi, nilai dari $$\boxed{\displaystyle \int_{-1}^0 \dfrac{t}{3t+4^3}~\text{d}t = -\dfrac18}$$Jawaban D [collapse] Soal Nomor 5 Hasil dari $\displaystyle \int x \cos x~\text{d}x = \cdots \cdot$ A. $x \cos x + \sin x + C$ B. $x \sin x + \cos x + C$ C. $x \cos x-\sin x + C$ D. $x \sin x- \cos x + C$ E. $x \cos x-\cos x+C$ Pembahasan Kita tuliskan $x \cos x~\text{d}x$ sebagai $u~\text{d}v$. Misalkan $$\begin{aligned} u = x & \Rightarrow \text{d}u = \text{d}x \\ \text{d}v = \cos x~\text{d}x & \Rightarrow v = \sin x \end{aligned}$$Dengan menggunakan rumus integrasi parsial, kita peroleh $$\begin{aligned} \displaystyle \int \underbrace{x}_{u} \underbrace{\cos x~\text{d}x}_{\text{d}v} & = \underbrace{x}_{u} \underbrace{\sin x}_{v}- \int \underbrace{\sin x}_{v}~\underbrace{\text{d}x}_{\text{d}u} \\ & = x \sin x-\cos x+C \\ & = x \sin x + \cos x + C \end{aligned}$$Jadi, hasil dari $$\boxed{\displaystyle \int x \cos x~\text{d}x =x \sin x + \cos x + C}$$Jawaban B [collapse] Baca Juga Soal dan Pembahasan – Jumlah Riemann Soal Nomor 6 Hasil dari $\displaystyle \int x \sin 2x~\text{d}x = \cdots \cdot$ A. $-\dfrac12 \cos 2x + \dfrac14 \sin 2x + C$ B. $\dfrac12 \cos 2x + \dfrac14 \sin 2x + C$ C. $-\dfrac12 \cos 2x-\dfrac14 \sin 2x + C$ D. $\dfrac14 \cos 2x + \dfrac12 \sin 2x + C$ E. $-\dfrac12 \sin 2x-\dfrac14 \cos 2x + C$ Pembahasan Misalkan $$\begin{aligned} u = x & \Rightarrow \text{d}u = \text{d}x \\ \text{d}v = \sin 2x~\text{d}x & \Rightarrow v = -\dfrac12 \cos 2x \end{aligned}$$Dengan menggunakan rumus integrasi parsial, kita peroleh $$\begin{aligned} \displaystyle \int \underbrace{x}_{u} \underbrace{\sin 2x~\text{d}x}_{\text{d}v} & = \underbrace{x}_{u} \cdot \left\underbrace{-\dfrac12 \cos 2x}_{v}\right- \int \underbrace{-\dfrac12 \cos 2x}_{v}~\underbrace{\text{d}x}_{\text{d}u} \\ & = -\dfrac12x \cos 2x + \dfrac12 \cdot \dfrac12 \sin 2x + C \\ & = -\dfrac12x \cos 2x + \dfrac14 \sin 2x + C \end{aligned}$$Jadi, hasil dari $$\boxed{\displaystyle \int x \sin 2x~\text{d}x = -\dfrac12x \cos 2x + \dfrac14 \sin 2x + C}$$Jawaban A [collapse] Soal Nomor 7 Hasil dari $\displaystyle \int x^2-1 \cos x~\text{d}x = \cdots \cdot$ A. $x^2-1 \sin x + 2x \cos x + C$ B. $x^2+1 \sin x + 2x \cos x + C$ C. $x^2-3 \sin x + 2x \cos x + C$ D. $x^2+3 \sin x + 2x \cos x + C$ E. $x^2+3 \sin x -2x \cos x + C$ Pembahasan Misalkan $$\begin{aligned} u = x^2-1 & \Rightarrow \text{d}u = 2x~\text{d}x \\ \text{d}v = \cos x~\text{d}x & \Rightarrow v = \sin x\end{aligned}$$Dengan menggunakan rumus integrasi parsial, kita peroleh $$\begin{aligned} \displaystyle \int \underbrace{x^2-1}_{u}~\underbrace{\cos x~\text{d}x}_{\text{d}v} & = \underbrace{x^2-1}_{u} \cdot \underbrace{\sin x}_{v}- \int \underbrace{\sin x}_{v} \cdot~\underbrace{2x~\text{d}x}_{\text{d}u} \\ & = x^2-1 \sin x-2 \color{red}{\int x~\sin x~\text{d}x} \end{aligned}$$Untuk mengintegralkan bentuk yang ditandai dengan warna merah di atas, gunakan kembali rumus integral parsial untuk $$\begin{aligned} u = x & \Rightarrow \text{d}u = \text{d}x \\ \text{d}v = \sin x~\text{d}x & \Rightarrow v = -\cos x\end{aligned}$$Kita akan peroleh $$\begin{aligned} x^2-1 \sin x-2 \color{red}{\int x~\sin x~\text{d}x} & = x^2-1 \sin x-2\left[x-\cos x-\int -\cos x~\text{d}x\right] \\ & = x^2-1 \sin x-2\left-x \cos x+\sin x\right+C \\ & = x^2-1 \sin x+2x \cos x-2 \sin x+C \\ & = x^2-3 \sin x + 2x \cos x + C \end{aligned}$$Jadi, hasil dari $$\boxed{\displaystyle \int x^2-1 \cos x~\text{d}x = x^2-3 \sin x+2x \cos x + C}$$Jawaban C [collapse] Soal Nomor 8 Misalkan $$\displaystyle \int t-3 \cos t-3~\text{d}t$$ sama dengan $$at-b \sin t-3 + c \cos t-3 + C$$ untuk suatu bilangan real $a, b, c$. Nilai dari $a + b + c = \cdots \cdot$ A. $-5$ C. $1$ E. $5$ B. $-3$ D. $3$ Pembahasan Misalkan $$\begin{aligned} u = t-3 & \Rightarrow \text{d}u = \text{d}t \\ \text{d}v = \cos t-3~\text{d}t & \Rightarrow v = \sin t-3 \end{aligned}$$Dengan menggunakan rumus integral parsial, diperoleh $$\begin{aligned} \displaystyle \int \underbrace{t-3}_{u} \underbrace{\cos t-3~\text{d}t}_{\text{d}v} & = \underbrace{t-3}_{u} \cdot \underbrace{\sin t-3}_{v}- \int \underbrace{\sin t-3}_{v}~\underbrace{\text{d}t}_{\text{d}u} \\ & = t-3 \sin t-3+\cos t-3 + C \end{aligned}$$Dari bentuk terakhir, diperoleh nilai $a = 1$, $b = 3$, dan $c = 1$ sehingga $\boxed{a+b+c = 1+3+1 = 5}$ Jawaban E [collapse] Baca Juga Soal dan Pembahasan – Luas Daerah Menggunakan Integral Soal Nomor 9 Hasil dari $\displaystyle \int \ln 3x~\text{d}x$ adalah $\cdots \cdot$ A. $x \ln 3x-x + C$ B. $3x \ln 3x-x + C$ C. $3x \ln 3x-3x + C$ D. $x \ln 3x+x + C$ E. $x \ln 3x+3x + C$ Pembahasan Misalkan $$\begin{aligned} u = \ln 3x = \ln 3 + \ln x & \Rightarrow \text{d}u = \dfrac{1}{x}~ \text{d}x \\ \text{d}v = \text{d}x & \Rightarrow v = x \end{aligned}$$Dengan menggunakan rumus integral parsial, diperoleh $$\begin{aligned} \displaystyle \int \underbrace{\ln 3x}_{u} \underbrace{\text{d}x}_{\text{d}v} & = \underbrace{\ln 3x}_{u} \cdot \underbrace{x}_{v}- \int \underbrace{x}_{v}\cdot ~\underbrace{\dfrac{1}{x}~\text{d}x}_{\text{d}u} \\ & = x \ln 3x-\int \text{d}x \\ & = x \ln 3x-x + C \end{aligned}$$Jadi, hasil dari $$\boxed{\displaystyle \int \ln 3x~\text{d}x = x \ln 3x-x + C}$$Jawaban A [collapse] Soal Nomor 10 Hasil dari $\displaystyle \int x \cdot e^x~\text{d}x$ adalah $\cdots \cdot$ A. $x \cdot e^x+e^x + C$ B. $x \cdot e^x-e^x + C$ C. $-x \cdot e^x-e^x + C$ D. $e^x-x \cdot e^x + C$ E. $x \cdot e^x + C$ Pembahasan Misalkan $$\begin{aligned} u = x & \Rightarrow \text{d}u = \text{d}x \\ \text{d}v = e^x~\text{d}x & \Rightarrow v = e^x \end{aligned}$$Dengan menggunakan rumus integrasi parsial, kita peroleh $$\begin{aligned} \displaystyle \int \underbrace{x}_{u} \underbrace{e^x~\text{d}x}_{\text{d}v} & = \underbrace{x}_{u} \cdot \underbrace{e^x}_{v}- \int \underbrace{e^x}_{v}~\underbrace{\text{d}x}_{\text{d}u} \\ & = x \cdot e^x-e^x+C \end{aligned}$$Jadi, hasil dari $$\boxed{\displaystyle \int x \cdot e^x~\text{d}x = x \cdot e^x-e^x+C}$$Jawaban B [collapse] Soal Nomor 11 Hasil dari $\displaystyle \int t \cdot e^{5t+\pi}~\text{d}t$ adalah $\cdots \cdot$ A. $\dfrac{1}{25}te^{5t+\pi}+\dfrac15e^{5t+\pi}+C$ B. $\dfrac{1}{25}te^{5t+\pi}-\dfrac15e^{5t+\pi}+C$ C. $\dfrac{1}{5}te^{5t+\pi}+\dfrac{1}{25}e^{5t+\pi}+C$ D. $\dfrac{1}{5}te^{5t+\pi}-\dfrac{1}{25}e^{5t+\pi}+C$ E. $\dfrac{1}{25}te^{5t+\pi}-\dfrac{1}{25}e^{5t+\pi}+C$ Pembahasan Misalkan $$\begin{aligned} u = t & \Rightarrow \text{d}u = \text{d}t \\ \text{d}v = e^{5t+\pi}~\text{d}t & \Rightarrow v = \dfrac15e^{5t+\pi} \end{aligned}$$Dengan menggunakan rumus integrasi parsial, kita peroleh $$\begin{aligned} \displaystyle \int \underbrace{t}_{u} \underbrace{e^{5t+\pi}~\text{d}t}_{\text{d}v} & = \underbrace{t}_{u} \cdot \underbrace{\dfrac15e^{5t+\pi}}_{v}- \int \underbrace{\dfrac15e^{5t+\pi}}_{v}~\underbrace{\text{d}t}_{\text{d}u} \\ & = \dfrac15te^{5t+\pi}-\dfrac15 \cdot \dfrac15e^{5t+\pi} + C \\ & = \dfrac15te^{5t+\pi}-\dfrac{1}{25}e^{5t+\pi} + C \end{aligned}$$Jadi, hasil dari $$\boxed{\displaystyle \int t \cdot e^{5t+\pi}~\text{d}t = \dfrac15te^{5t+\pi}-\dfrac{1}{25}e^{5t+\pi} + C}$$Jawaban D [collapse] Baca Juga Soal dan Pembahasan – Volume Benda Putar Menggunakan Integral Bagian Uraian Soal Nomor 1 Carilah hasil dari $\displaystyle \int \dfrac{2x+5}{x-2^3}~\text{d}x.$ Pembahasan Misalkan $$\begin{aligned} u = 2x+5 & \Rightarrow \text{d}u = 2~\text{d}x \\ \text{d}v =\dfrac{1}{x-2^3}~\text{d}x & \Rightarrow v = -\dfrac{1}{2x-2^2} \end{aligned}$$Dengan menggunakan rumus integrasi parsial, kita peroleh $$\begin{aligned} \displaystyle \int \dfrac{2x+5}{x-2^3}~\text{d}x & = \int \underbrace{2x+5}_{u} \cdot ~\underbrace{\dfrac{1}{x-2^3}~\text{d}x}_{\text{d}v} \\ & = \underbrace{2x+5}_{u} \cdot \left\underbrace{-\dfrac{1}{2x-2^2}}_{v}\right- \int \underbrace{-\dfrac{1}{\cancel{2}x-2^2}}_{v} \cdot~\underbrace{\cancel{2}~\text{d}x}_{\text{d}u} \\ & = -\dfrac{2x+5}{2x-2^2}+\int \dfrac{1}{x-2^2}~\text{d}x \\ & = -\dfrac{2x+5}{2x-2^2}-\dfrac{1}{x-2}+C \\ & = -\dfrac{2x+5}{2x-2^2}-\dfrac{2x-2}{2x-2^2} + C \\ & = -\dfrac{4x+1}{2x-2^2} + C \end{aligned}$$Jadi, hasil dari $$\boxed{\displaystyle \int \dfrac{2x+5}{x-2^3}~\text{d}x = -\dfrac{4x+1}{2x-2^2} + C}$$ [collapse] Soal Nomor 2 Carilah hasil dari $\displaystyle \int \dfrac{7t}{2t-1^5}~\text{d}t.$ Pembahasan Perhatikan bahwa bentuk integran di atas dapat ditulis kembali menjadi $$\displaystyle 7 \int t2t-1^{-5}~\text{d}t.$$Misalkan $$\begin{aligned} u & = t \Rightarrow \text{d}u = \text{d}t \\ \text{d}v & = 2t-1^{-5}~\text{d}t \end{aligned}$$Dengan mengintegralkan $\text{d}v$ menggunakan metode substitusi, dalam hal ini, $u = 2t-1$, diperoleh $$\begin{aligned} v & = \displaystyle \int 2t-1^{-5}~\text{d}t \\ & = \dfrac12 \cdot \dfrac{1}{-4} 2t-1^{-4} \\ & = -\dfrac18 2t-1^{-4} \end{aligned}$$Catatan Konstanta $C$ tidak perlu ditulis. Dengan menggunakan rumus integrasi parsial, kita peroleh $$\begin{aligned} \displaystyle 7 \int \underbrace{t}_{u} \underbrace{2t-1^{-5}~\text{d}t}_{\text{d}v} & = 7\left[\underbrace{t}_{u} \cdot \left\underbrace{-\dfrac182t-1^{-4}}_{v}\right- \int \underbrace{-\dfrac182t-1^{-4}}_{v}~\underbrace{\text{d}t}_{\text{d}u}\right] \\ & = -\dfrac78t2t-1^{-4} + 7 \cdot \dfrac18 \cdot \dfrac12 \cdot \dfrac{1}{-3} 2t-1^{-3} + C \\ & = -\dfrac78t2t-1^{-4}-\dfrac{7}{48}2t-1^{-3} + C \\ & = -\dfrac{7}{48}2t-1^{-3}\left6t2t-1^{-1} + 1\right + C \\ & = -\dfrac{7}{482t-1^3}\left\dfrac{6t}{2t-1}+\dfrac{2t-1}{2t-1}\right+C \\ & = -\dfrac{78t-1}{482t-1^4}+C \end{aligned}$$Jadi, hasil dari $$\boxed{\displaystyle \int \dfrac{7t}{2t-1^5}~\text{d}t = -\dfrac{78t-1}{482t-1^4}+C}$$ [collapse] Soal Nomor 3 Carilah hasil dari $\displaystyle \int t^3~\sin t~\text{d}t.$ Pembahasan Untuk mencari hasil integral tersebut, kita akan menggunakan teknik integral parsial sebanyak $3$ kali. Misalkan $$\begin{aligned} u = t^3 & \Rightarrow \text{d}u = 3t^2 ~\text{d}t \\ \text{d}v = \sin t~\text{d}t & \Rightarrow v = -\cos t\end{aligned}$$Dengan menggunakan rumus integrasi parsial, kita peroleh $$\begin{aligned} \displaystyle \int \underbrace{t^3}_{u} \underbrace{\sin t~\text{d}t}_{\text{d}v} & = \underbrace{t^3}_{u} \cdot \left\underbrace{-\cos t}_{v}\right- \int \underbrace{-\cos t}_{v}~\underbrace{3t^2~\text{d}t}_{\text{d}u} \\ & = -t^3 \cos t + 3 \color{red}{\int t^2~\cos t~\text{d}t} \end{aligned}$$Sekarang, misalkan $$\begin{aligned} u = t^2 & \Rightarrow \text{d}u = 2t ~\text{d}t \\ \text{d}v = \cos t~\text{d}t & \Rightarrow v = \sin t\end{aligned}$$Dengan menggunakan rumus integrasi parsial, kita peroleh $$\begin{aligned} \displaystyle -t^3 \cos t + 3 \color{red}{\int t^2~\cos t~\text{d}t} & = -t^3 \cos t + 3\left[t^2 \sin t-\int \sin t \cdot 2t~\text{d}t\right] \\ & = -t^3 \cos t + 3t^2 \sin t-6 \color{red}{\int t \sin t~\text{d}t} \end{aligned}$$Terakhir, misalkan $$\begin{aligned} u = t & \Rightarrow \text{d}u = \text{d}t \\ \text{d}v = \sin t~\text{d}t & \Rightarrow v = -\cos t\end{aligned}$$Dengan menggunakan rumus integrasi parsial, kita peroleh $$\begin{aligned} & -t^3 \cos t + 3t^2 \sin t-6 \color{red}{\int t \sin t~\text{d}t} \\ & = -t^3 \cos t + 3t^2 \sin t-6\left[-t \cos t-\int -\cos t~\text{d}t\right] \\ & = -t^3 \cos t + 3t^2 \sin t+6t \cos t-6 \sin t \\ & = -t^3+6t~\cos t + 3t^2-6~\sin t + C \end{aligned}$$Jadi, hasil dari $$\boxed{\displaystyle \int t^3 \sin t~\text{d}t = -t^3+6t~\cos t + 3t^2-6~\sin t + C }$$ [collapse] Soal Nomor 4 Tentukan hasil dari integral tentu berikut. $$\displaystyle \int_{\pi/9}^{\pi/6} x \cos 3x~\text{d}x$$ Pembahasan Misalkan $$\begin{aligned} u = x & \Rightarrow \text{d}u = \text{d}x \\ \text{d}v = \cos 3x~\text{d}t & \Rightarrow v = \dfrac13 \sin 3x \end{aligned}$$Dengan menggunakan rumus integrasi parsial untuk integral tentu, kita peroleh $$\begin{aligned} \displaystyle & \int_{\pi/9}^{\pi/6} x \cos 3x~\text{d}x \\ & = \left[x \cdot \dfrac13 \sin 3x\right]_{\pi/9}^{\pi/6}-\displaystyle \int_{\pi/6}^{\pi/9} \dfrac13 \sin 3x~\text{d}x \\ & = \dfrac{\pi}{6} \cdot \dfrac13 \sin \dfrac{\pi}{2}-\dfrac{\pi}{9} \cdot \dfrac13 \sin \dfrac{\pi}{3}-\dfrac13 \cdot \dfrac13 \left[-\cos 3x\right]_{\pi/9}^{\pi/6} \\ & = \dfrac{\pi}{18}1-\dfrac{\pi}{27} \cdot \dfrac12\sqrt3+\dfrac19\left\cos \dfrac{\pi}{2}-\cos \dfrac{\pi}{3}\right \\ & = \dfrac{\pi}{18}-\dfrac{\pi}{54}\sqrt3 + \dfrac19\left0-\dfrac12\right \\ & = \dfrac{\pi}{18}-\dfrac{\pi}{54}\sqrt3-\dfrac{1}{18} \\ & = \dfrac{3\pi}{54}-\dfrac{\pi}{54}\sqrt3-\dfrac{3}{54} \\ & = \dfrac{3-\sqrt3\pi-3}{54} \end{aligned}$$Jadi, nilai dari $$\boxed{\displaystyle \int_{\pi/9}^{\pi/6} x \cos 3x~\text{d}x = \dfrac{3-\sqrt3\pi-3}{54}}$$ [collapse] Baca Juga Soal dan Pembahasan – Turunan Fungsi Aljabar Soal Nomor 5 Gunakan integrasi parsial untuk menurunkan rumus berikut. $$\displaystyle \int \sin x \sin 3x~\text{d}x = -\dfrac38 \sin x \cos 3x + \dfrac18 \cos x \sin 3x + C$$ Pembahasan Diberikan integral berikut. $$ \displaystyle \int \sin x \sin 3x~\text{d}x$$Akan ditunjukkan bahwa hasil integrasinya adalah $$-\dfrac38 \sin x \cos 3x + \dfrac18 \cos x \sin 3x + C$$menggunakan rumus integral parsial. Misalkan $$\begin{aligned} u = \sin x & \Rightarrow \text{d}u = \cos x~ \text{d}x \\ \text{d}v = \sin 3x~\text{d}x & \Rightarrow v = -\dfrac13 \cos 3x \end{aligned}$$Dengan menggunakan rumus integral parsial, diperoleh $$\begin{aligned} \displaystyle \int \underbrace{\sin x}_{u} \underbrace{\sin 3x~\text{d}x}_{\text{d}v} & = \underbrace{\sin x}_{u} \cdot \left\underbrace{-\dfrac13 \cos 3x}_{v}\right- \int \underbrace{-\dfrac13 \cos 3x}_{v} \cdot ~\underbrace{\cos x~\text{d}x}_{\text{d}u} \\ & = -\dfrac13 \sin x \cos 3x+\dfrac13 \int \cos 3x \cos x~\text{d}x \end{aligned}$$Gunakan rumus integral parsial sekali lagi pada bentuk $$\displaystyle \int \cos 3x \cos x~\text{d}x$$Misalkan $$\begin{aligned} u = \cos x & \Rightarrow \text{d}u = -\sin x~\text{d}x \\ \text{d}v = \cos 3x & \Rightarrow v = \dfrac13 \sin 3x \end{aligned}$$sehingga kita peroleh $$\begin{aligned} \displaystyle \int \sin x \sin 3x~\text{d}x & = -\dfrac13 \sin x \cos 3x+\dfrac13\left[\underbrace{\cos x}_{u} \cdot \left\underbrace{\dfrac13 \sin 3x}_{v}\right- \int \underbrace{\dfrac13 \sin 3x}_{v} \cdot ~\underbrace{-\sin x~\text{d}x}_{\text{d}u}\right] \\ \int \sin x \sin 3x~\text{d}x & = -\dfrac13 \sin x \cos 3x+\dfrac19 \cos x \sin 3x+\dfrac19 \int \sin 3x \sin x~\text{d}x \\ \dfrac89 \int \sin x \sin 3x~\text{d}x & = -\dfrac13 \sin x \cos 3x+\dfrac19 \cos x \sin 3x+K \\ \int \sin x \sin 3x~\text{d}x & = -\dfrac38 \sin x \cos 3x+\dfrac18 \cos x \sin 3x + C \end{aligned}$$Jadi, berdasarkan integrasi parsial, kita telah menurunkan rumus integral trigonometri berikut. $$\boxed{\displaystyle \int \sin x \sin 3x~\text{d}x = -\dfrac38 \sin x \cos 3x + \dfrac18 \cos x \sin 3x + C}$$ [collapse] Soal Nomor 6 Gunakan integrasi parsial untuk menurunkan rumus berikut. $$\displaystyle \int \cos 5x \sin 7x~\text{d}x = -\dfrac{7}{24} \cos 5x \cos 7x -\dfrac{5}{24} \sin 5x \sin 7x + C$$ Pembahasan Diberikan integral berikut. $$\displaystyle \int \cos 5x \sin 7x~\text{d}x$$Akan ditunjukkan bahwa hasil integrasinya adalah $$-\dfrac{7}{24} \cos 5x \cos 7x -\dfrac{5}{24} \sin 5x \sin 7x + C$$menggunakan rumus integral parsial. Misalkan $$\begin{aligned} u = \cos 5x & \Rightarrow \text{d}u = -5 \sin 5x~ \text{d}x \\ \text{d}v = \sin 7x~\text{d}x & \Rightarrow v = -\dfrac17 \cos 7x \end{aligned}$$Dengan menggunakan rumus integral parsial, diperoleh $$\begin{aligned} \displaystyle \int \underbrace{\cos 5x}_{u} \underbrace{\sin 7x~\text{d}x}_{\text{d}v} & = \underbrace{\cos 5x}_{u} \cdot \left\underbrace{-\dfrac17 \cos 7x}_{v}\right- \int \underbrace{-\dfrac17 \cos 7x}_{v} \cdot \underbrace{-5 \sin 5x~\text{d}x}_{\text{d}u} \\ & = -\dfrac17 \cos 5x \cos 7x-\dfrac57 \int \cos 7x \sin 5x~\text{d}x \end{aligned}$$Gunakan rumus integral parsial sekali lagi pada bentuk $$\displaystyle \int \cos 7x \sin 5x~\text{d}x$$Misalkan $$\begin{aligned} u = \sin 5x & \Rightarrow \text{d}u = 5 \cos 5x~\text{d}x \\ \text{d}v = \cos 7x & \Rightarrow v = \dfrac17 \sin 7x \end{aligned}$$sehingga kita peroleh $$\begin{aligned} \displaystyle \int \cos 5x \sin 7x~\text{d}x & = -\dfrac17 \cos 5x \cos 7x-\dfrac57\left[\underbrace{\sin 5x}_{u} \cdot \underbrace{\dfrac17 \sin 7x}_{v}- \int \underbrace{\dfrac17 \sin 7x}_{v} \cdot ~\underbrace{5 \cos 5x~\text{d}x}_{\text{d}u}\right] \\ \int \cos 5x \sin 7x~\text{d}x & = -\dfrac17 \cos 5x \cos 7x-\dfrac{5}{49} \sin 5x \sin 7x + \dfrac{25}{49} \int \cos 5x \sin 7x~\text{d}x \\ \dfrac{24}{49} \int \cos 5x \sin 7x~\text{d}x & = -\dfrac17 \cos 5x \cos 7x-\dfrac{5}{49} \sin 5x \sin 7x + K \\ \int \cos 5x \sin 7x~\text{d}x & = -\dfrac{7}{24} \cos 5x \cos 7x-\dfrac{5}{24} \sin 5x \sin 7x + C \end{aligned}$$Jadi, berdasarkan integrasi parsial, kita telah menurunkan rumus integral trigonometri berikut. $$\boxed{\displaystyle \int \cos 5x \sin 7x~\text{d}x = -\dfrac{7}{24} \cos 5x \cos 7x -\dfrac{5}{24} \sin 5x \sin 7x + C}$$ [collapse] Soal Nomor 7 Carilah hasil dari $\displaystyle \int e^x \sin x~\text{d}x.$ Pembahasan Misalkan $$\begin{aligned} u = e^x & \Rightarrow \text{d}u = e^x~\text{d}x \\ \text{d}v = \sin x~\text{d}x & \Rightarrow v = -\cos x \end{aligned}$$Dengan menggunakan rumus integrasi parsial, kita peroleh $$\displaystyle \int e^x \sin x~\text{d}x = -e^x \cos x + \color{red}{\int e^x \cos x~\text{d}x}~~~\cdots 1$$Selanjutnya, gunakan rumus integrasi parsial sekali lagi pada bentuk integralnya ditandai dengan warna merah di atas. $$\begin{aligned} u = e^x & \Rightarrow \text{d}u = e^x~\text{d}x \\ \text{d}v = \cos x~\text{d}x & \Rightarrow v = \sin x \end{aligned}$$Kita akan peroleh $$\displaystyle \int e^x \cos x~\text{d}x = e^x \sin x- \color{blue}{\int e^x \sin x~\text{d}x}$$Jika disubstitusikan pada persamaan $1$ di atas, kita peroleh $$\begin{aligned} \displaystyle \int e^x \sin x~\text{d}x & = -e^x \cos x + e^x \sin x-\int e^x \sin x~\text{d}x \\ 2 \int e^x \sin x~\text{d}x & = -e^x \cos x + e^x \sin x+C \\ \int e^x \sin x~\text{d}x & = \dfrac{ -e^x \cos x + e^x \sin x}{2}+K \\ \int e^x \sin x~\text{d}x & = \dfrac{e^x\sin x-\cos x}{2}+K \end{aligned}$$Catatan Perhatikan bahwa notasi konstanta berubah dari $C$ menjadi $K = \dfrac{C}{2}$. Penggunaan notasi konstanta bisa disesuaikan dengan memilih huruf kapital yang lain. Fakta bahwa integral yang hendak kita cari muncul kembali di ruas kanan membuat kita dapat mencari hasil integralnya. [collapse] Baca Juga Soal dan Pembahasan – Turunan Fungsi Trigonometri Soal Nomor 8 Hitunglah $\displaystyle \int \ln ax^b~\text{d}x$ untuk suatu $a, b$ anggota bilangan real. Pembahasan Misalkan $$\begin{aligned} u = \ln ax^b = \ln a + b \ln x & \Rightarrow \text{d}u = \dfrac{b}{x}~ \text{d}x \\ \text{d}v = \text{d}x & \Rightarrow v = x \end{aligned}$$Dengan menggunakan rumus integral parsial, diperoleh $$\begin{aligned} \displaystyle \int \underbrace{\ln ax^b}_{u} \underbrace{\text{d}x}_{\text{d}v} & = \underbrace{\ln ax^b}_{u} \cdot \underbrace{x}_{v}- \int \underbrace{x}_{v}\cdot ~\underbrace{\dfrac{b}{x}~\text{d}x}_{\text{d}u} \\ & = x \ln ax^b-\int b~\text{d}x \\ & = x \ln ax^b-bx + C \end{aligned}$$Jadi, hasil dari $$\boxed{\displaystyle \int \ln ax^b~\text{d}x = x \ln ax^b-bx + C}$$ [collapse] Soal Nomor 9 Hitunglah $\displaystyle \int \arctan x~\text{d}x.$ Pembahasan Misalkan $$\begin{aligned} u = \arctan x & \Rightarrow \text{d}u = \dfrac{1}{1+x^2}~ \text{d}x \\ \text{d}v = \text{d}x & \Rightarrow v = x \end{aligned}$$Dengan menggunakan rumus integral parsial, diperoleh $$\begin{aligned} \displaystyle \int \underbrace{\arctan x}_{u} \underbrace{\text{d}x}_{\text{d}v} & = \underbrace{\arctan x}_{u} \cdot \underbrace{x}_{v}- \int \underbrace{x}_{v} \cdot ~\underbrace{\dfrac{1}{1+x^2}~\text{d}x}_{\text{d}u} \\ & = x \arctan x-\int \dfrac{x}{1+x^2}~\text{d}x \end{aligned}$$Gunakan metode substitusi. Misalkan $u = 1+x^2$, maka $\text{d}u = 2x~\text{d}x$ sehingga diperoleh $$\begin{aligned} \displaystyle x \arctan x-\int \dfrac{x}{1+x^2}~\text{d}x & = x \arctan x-\dfrac12 \int \dfrac{1}{u}~\text{d}u \\ & = x \arctan x-\dfrac12 \ln u + C \\ & = x \arctan x-\dfrac12 \ln 1+x^2 + C \end{aligned}$$Jadi, hasil dari $$\boxed{\displaystyle \int \arctan x~\text{d}x = x \arctan x-\dfrac12 \ln 1+x^2 + C}$$ [collapse] Soal Nomor 10 Hitunglah nilai dari $\displaystyle \int_1^e \sqrt{t} \ln t~\text{d}t.$ Pembahasan Misalkan $$\begin{aligned} u = \ln t & \Rightarrow \text{d}u = \dfrac{1}{t}~ \text{d}t \\ \text{d}v = \sqrt{t}~\text{d}t & \Rightarrow v = \dfrac23t^{3/2} \end{aligned}$$Dengan menggunakan rumus integral parsial, diperoleh $$\begin{aligned} \displaystyle \int_1^e \underbrace{\ln t}_{u} \underbrace{\sqrt{t}~\text{d}t}_{\text{d}v} & = \left[\underbrace{\ln t}_{u} \cdot \underbrace{\dfrac23t^{3/2}}_{v}\right]_1^e- \int_1^e \underbrace{\dfrac23t^{3/2}}_{v} \cdot ~\underbrace{\dfrac{1}{t}~\text{d}t}_{\text{d}u} \\ & = \left[\dfrac23t^{3/2} \cdot \ln t\right]_1^e-\dfrac23 \int_1^e t^{1/2}~\text{d}t \\ & = \left[\dfrac23t^{3/2} \cdot \ln t\right]_1^e-\dfrac49 \left[t^{3/2}\right]_1^e \\ & = \left\dfrac23e^{3/2} \cdot \ln e-\dfrac23 \cdot 1^{3/2} \cdot \ln 1\right-\dfrac49\lefte^{3/2}-1^{3/2}\right \\ & = \left\dfrac23e^{3/2}-0\right-\dfrac49\lefte^{3/2}-1\right \\ & = \dfrac29e^{3/2}+\dfrac49 \\ & = \dfrac29\lefte^{3/2} + 2\right \end{aligned}$$Jadi, hasil dari $$\boxed{\displaystyle \int \sqrt{t} \ln t~\text{d}t = \dfrac29\lefte^{3/2} + 2\right}$$ [collapse] Soal Nomor 11 Carilah galat kesalahan dalam langkah pembuktian menggunakan integrasi parsial berikut bahwa $0 = 1.$ Untuk mengintegralkan $\displaystyle \int \dfrac{1}{t}~\text{d}t$, tetapkan permisalan berikut. $$\begin{aligned} u = \dfrac{1}{t} & \Rightarrow \text{d}u = -\dfrac{1}{t^2}~ \text{d}t \\ \text{d}v = \text{d}t & \Rightarrow v = t \end{aligned}$$Dengan menggunakan rumus integral parsial, kita peroleh $$\begin{aligned} \displaystyle \int \underbrace{\dfrac{1}{t}}_{u} \cdot \underbrace{\text{d}t}_{\text{d}v} & = \underbrace{\dfrac{1}{t}}_{u} \cdot \underbrace{t}_{v}- \int \underbrace{t}_{v} \cdot \underbrace{-\dfrac{1}{t^2}~\text{d}t}_{\text{d}u} \\ \int \dfrac{1}{t}~\text{d}t & = 1+\int \dfrac{1}{t}~\text{d}t \\ 0 & = 1 \end{aligned}$$ Pembahasan Dengan menggunakan aturan dasar integral tak tentu, kita seharusnya tahu bahwa $$\displaystyle \int fx~\text{d}x = Fx + C$$ untuk suatu konstanta $C$. Ini menunjukkan setiap proses pengintegrasian integral tak tentu, konstanta $C$ harus dimunculkan. Pada langkah terakhir pembuktian di atas, konstanta $C$ tidak dimunculkan. Misalkan hasil integralnya adalah $Fx + C_i$, maka diperoleh $$\begin{aligned} \cancel{Fx} + C_1 & = 1 + \cancel{Fx} + C_2 \\ C_1 & = 1 + C_2 \\ 0 & = 1 + C_2-C_1 \\ 0 & = 1 + C \end{aligned}$$Pernyataan ini akan benar apabila $C_2-C_1 = C = -1$. Catatan Pembuktian yang menghasilkan pernyataan yang keliru seperti kasus ini termasuk dalam ranah kelancungan matematis mathematical fallacy. [collapse] 29++ Contoh Soal Turunan Parsial Dan Penyelesaiannya - Kumpulan Contoh Soal 18++ Contoh Soal Turunan Parsial Pertama - Kumpulan Contoh Soal Soal Turunan Parsial Dan Jawabannya TURUNAN PARSIAL MATERI KALKULUS I. - ppt download Turunan Parsial 3 Variabel Turunan Parsial – Aninpranidhana Fisika Matematika Contoh Soal Diferensial/ Turunan Parsial 1 - YouTube Fisika Matematika Contoh Soal Diferensial/ Turunan Parsial 2 - YouTube Turunan Parsial – Aninpranidhana Turunan Parsial – Aninpranidhana 20++ Contoh Soal Turunan Parsial - Kumpulan Contoh Soal TURUNAN PARSIAL dan TURUNAN PARSIAL ORDO TINGGI - ppt download PPT - TURUNAN PARSIAL PowerPoint Presentation, free download - ID5568637 Kalkulus Turunan Parsial PDF Turuna parsial fungsi dua peubah atau lebih TURUNAN PARSIAL Kalkulus - Turunan Parsial PDF Soal dan Pembahasan Turunan Fungsi Implisit 1-5 Istana Mengajar TEKNIK INDUSTRI Kalkulus 3 Turunan Parsial DOC KALKULUS IV TURUNAN PARSIAL ORDE TINGGI fikri muhamad - Turunan Fungsi Parsial - ppt download Turuna parsial fungsi dua peubah atau lebih Turunan Parsial – Aninpranidhana Persamaan Differensial beserta soal dan pembahasan Lengkap KEDAI MIPA TURUNAN PARSIAL 28+ Contoh Soal Aplikasi Turunan Parsial Turunan Parsial PDF Contoh Soal Dan Jawaban Turunan Parsial Kalkulus turunan parsial - Belajar Fisika Matematika Contoh soal diferensial/ turunan parsial 3 - YouTube tolong bantuin jawab dongtentukan sampai dg derivatif parsial kedua untuk - Turuna parsial fungsi dua peubah atau lebih Modul ke MATEMATIKA 1 DERIVATIF PARSIAL. Fakultas TEKNIK IMELDA ULI VISTALINA SIMANJUNTAK, Program Studi TEKNIK ELEKTRO - PDF Free Download Contoh Soal Dan Jawaban Matematika Ekonomi Diferensial - Kumpulan Contoh Surat dan Soal Terlengkap TURUNAN PARSIAL Soal Dan Jawaban Integral Substitusi Trigonometri - Kumpulan Contoh Surat dan Soal Terlengkap Contoh Soal Dan Jawaban Turunan Parsial Turunan Dari Fungsi Konstanta Adalah Brainly akhmad saifuddin 12312022 bab 4 turunan parsial by Akhmad Saifuddin - issuu Contoh Soal Diferensial Parsial – Kami Contoh Turunan Implisit - YouTube Contoh Soal Turunan Fungsi Parsial Soal 2. Carilah turunan parsial pertama dari fungsi Y=X1 + 2XI X2+5X2^2-2x Turuna parsial fungsi dua peubah atau lebih TURUNAN PARSIAL Turunan diferensial – Math is My Life y=x,y=4x2-6x2z+3xz2+5 tentukan diferensial parsial dan diferensial total - Contoh Soal Aplikasi Turunan Diferensial dan Jawaban [+Pembahasan] DOC Turunan Berarah Salim Kurni - Kalkulus turunan parsial - Belajar Turunan Fungsi Parsial - ppt download Turunan Parsial – Aninpranidhana Kalkulus Fungsi Dua Peubah Part 6 - Turunan Parsial Kedua - YouTube Turunan Parsial PDF √ Turunan Pengertian, Macam, Rumus, & Contoh Soal Contoh Soal Turunan Implisit Beserta Jawabannya √ Turunan Fungsi Aljabar Turunan Dasar, Rumus, Soal, Pembahasan Diferensial Parsial Soal dan pembahasan turunan/Diferensial Hots. Turunan bentuk logaritma, bentuk ln dan epsilon - YouTube Contoh Soal Turunan Parsial Dan Penyelesaiannya - Contoh Soal Terbaru turunan parsial pertama dan kedua dari fungsi fx,y=1/x^2+y^2 - TURUNAN PARSIAL Contoh Soal Dan Pembahasan Limit Turunan Trigonometri - Kumpulan Contoh Surat dan Soal Terlengkap Contoh Soal Turunan Fungsi Ppt Soal dan Penyelesaian Turunan Fungsi part 1 - YouTube 13+ Soal turunan parsial dan jawabannya ideas in 2021 Huse ID Contoh Soal Turunan Parsial Dan Penyelesaiannya - Bakti Soal Latihan Soal dan Pembahasan Turunan Fungsi Peubah Banyak Bagian 2 Contoh Soal Dan Jawaban Di Mata Kuliah Kalkulus - Kemendikbud Rumus Dan Contoh Soal Turunan Fungsi Trigonometri Lengkap Contoh Soal dan Pembahasan Titik Stasioner Beserta Fungsinya TURUNAN PARSIAL Soal Tentukan turunan kedua untuk setiap fungsi berikut pada x yang diketahui. fx=sec x pada Modul ke MATEMATIKA 1 DERIVATIF PARSIAL. Fakultas TEKNIK IMELDA ULI VISTALINA SIMANJUNTAK, Program Studi TEKNIK ELEKTRO - PDF Free Download Bantu jawab soal turunan parsial 1. Z = ln ✓ x + y 2. Z = 36 - x² - y² 3. Z = xy² -2x² + 3y Rangkuman, Contoh Soal dan Pembahasan Integral Parsial [SMA Kelas 12] ANALISIS KESALAHAN MAHASISWA DALAM MENYELESAIKAN SOAL KALKULUS LANJUT DENGAN EKA’S ERROR ANALYSIS Latihan Soal dan Pembahasan Turunan Fungsi Peubah Banyak Bagian 2 Rangkuman, Contoh Soal & Pembahasan Turunan jawaban soal integral parsial nomor 2 - Turunan Parsial – Aninpranidhana ANALISIS KESALAHAN MAHASISWA DALAM MENYELESAIKAN SOAL KALKULUS PEUBAH BANYAK THE ANALYSIS OF STUDENTS’ ERRORS IN ANSWERING MU ANALISIS KESALAHAN MAHASISWA DALAM MENYELESAIKAN SOAL KALKULUS LANJUT DENGAN EKA’S ERROR ANALYSIS Mohon bantuan Materi turunan parsial tingkat tinggi - TURUNAN PARSIAL - Turunan Parsial • Misalkan z = fx,y fungsi 2 variabel - [PDF Document] Contoh Soal Turunan Fungsi Matematika Ekonomi Soal intx^2*e^xdx PENERAPAN TURUNAN PARSIAL DI BIDANG EKONOMI ANALISIS KESALAHAN REPRESENTASI SIMBOLIK MAHASISWA DALAM MENYELESAIKAN SOAL HIGH ORDER THINKING SKILL Anggiana Putri Aliyanti , Kumpulan Contoh Soal Integral Dan Pembahasannya Guru Belajarku Contoh Soal Integral Tentu, Tak Tentu, Substitusi, Parsial Contoh Soal Integral Parsial Kuliah Contoh Soal Dan Jawabannya Integral Tentu ANALISIS KESALAHAN REPRESENTASI SIMBOLIK MAHASISWA DALAM MENYELESAIKAN SOAL HIGH ORDER THINKING SKILL Anggiana Putri Aliyanti , Persamaan Diferensial Parsial Dengan Menggunakan Matlab Contoh Soal Integral Tentu, Tak Tentu, Substitusi, Parsial, Trigonometri TURUNAN PARSIAL Kumpulan Contoh Soal Limit dan Pembahasannya Guru Belajarku Jika z=arc tg x/y , buktikan ^2 z/xy=^2 z/yx Jika z=ln⁡〖x-a^2 〗+x-b^2 tujukan - √ Contoh Soal Integral Tentu, Tak tentu, & Parsial

soal turunan parsial dan jawabannya